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Abstract—The reaction of the sodium enolate of the methyl ketone 2 with a range of nitro olefins proceeds readily to give the
corresponding Michael adducts in good yields and diastereoselectivities. Subsequent oxidative cleavage of the acyloin moiety
provides �-nitroalkanoic acids along with (1R)-(+)-camphor, the chiral auxiliary of the process, which can be recovered and
reused. © 2001 Elsevier Science Ltd. All rights reserved.

The asymmetric Michael addition of enolizable car-
bonyl compounds to electron deficient olefins is a fun-
damental process for the stereoselective construction of
C�C bonds.1,2 Nitroalkenes are of special interest as
powerful Michael acceptors due to the strong anion-
stabilizing effect of the nitro group which causes the
reaction to proceed with very high efficiency.3 On the
other hand, the nitro group can be transformed into
other functionalities such as the carbonyl group via Nef
reaction or an amino group by reduction.4 However,
despite the recent advances in this area,5 there are very
few examples of diastereoselective Michael reactions
with nitro olefins.6 One important problem associated
with this process is the usual lack of stereoselection
with enolates of �-unsubstituted carboxylic acid deriva-
tives.7 Recently we have reported on the use of the
methyl ketone 2 in ‘acetate’ aldol8 and Mannich9 reac-

tions. Herein we report on the reaction of 2 with
aromatic nitro olefins10 as the key-step for a highly
stereoselective synthesis of �-nitroalkanoic acids and
their �-lactam derivatives. These compounds are pre-
cursors of �-amino acids which have potent activity on
the central nervous system.11

As Scheme 1 illustrates, the methyl ketone 2, readily
available from (1R)-(+)-camphor 1 and acetylene,8

upon treatment with NaHMDS and subsequent reac-
tion with nitrostyrene in THF at −78°C provided the
adduct 3a in good yield and acceptable diastereoselec-
tivity. Under similar reaction conditions, the lithium
enolate of 2, generated from either LDA or LiHMDS,
worked without efficiency in terms of diastereoselectiv-
ity, and the potassium enolate of 2 did not provide the
expected adduct. Results are listed in Table 1 to illus-

Scheme 1.
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Table 1. Diastereoselective Michael reactions of 2 with
nitro olefins

t (h) d.r.aProduct Yield %bBase

163a 75:25LDA nd
LiHMDS 0.5 70:30 nd
NaHMDS 0.5 93:7 67

16 65:35LDA nd3b
NaHMDS 0.5 94:6 65
NaHMDS4c 0.5 93:7 64c

0.5 94:6NaHMDS 53c4d

a Determined by 1H NMR (500 MHz) and by HPLC (Lichorsorb Si
60, 5 �m, 20°C; eluant: ethyl acetate:hexane 1:99).

b Yield of isolated, pure products. nd: not determined.
c Overall from 2.

equivalent with nitro olefins that formally involves the
use of acetylene as the elementary source of carbonyl
(acetyl) and (1R)-(+)-camphor as the source of chiral
information. In addition, from an economical point of
view, such a process with (1S)-(+)-camphor would also
be viable as a route to the biologically active (R)-�-
amino acids, since the chiral controller, with no loss of
chiral integrity, might be recovered at the final stage
and could be reused.
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